Security at the Speed of
Software Development

Implementing a cultural sea change
with DevSecOps

FHOPS=RA

Author

Larry Maccherone is an industry thought leader in the
DevSecOps movement.

Maccherone published the largest ever study correlating
practices with performance, which has been a cornerstone
project of his career.

Still an active developer, Maccherone has 12+ projects he
manages, and encourages developers to stay active in
development, even as they ascend the hierarchy.

Maccherone is a Distinguished Engineer at Comcast and is
leading the DevSecOps transformation initiative within the
organization. bdelivery process.

"n.-l-ll-llr'F'i

3

L *i
1

What is DevSecOps

DevOps has become a well-known concept in the software
world over the last several years, but the focus on simply
marrying the development and deployment aspects of
the pipeline fall short on a critical piece that can no longer
be an afterthought: security.

DevSecOps is the integration of security checks and practices
built directly within the development pipeline. The DevSecOps
movement is an opportunity to re-introduce the concepts
of security in a way that fits seamlessly within modern
development practices and pipelines.

This represents a sea change from older DevOps methodologies
that treat security as an afterthought and handle it as such.
Market research suggests DevSecOps will grow at 30+ percent
per year for the next seven to eight years.

Development teams must reposition their existing offerings and
development practices to “bake in” security to protect against
technical compromises. Further, leaders in development-oriented
organizations must make traditional security concepts sit
with the teams that will directly benefit from DevOps.

SECURITY AT THE SPEED OF SOFTWARE

The old bolt-on way of thinking about security does not scale.
The rate of change of software is accelerating faster than the
rate of bolt-on security solutions, and security specialists
simply can’t keep up with a gating mentality.

Problem Statement: We must get development teams to
become involved firsthand in the process of securing the
products that they’re building and pushing into production.

The element of ownership is a key driving factor. DevSecOps
means empowering engineering teams to take full ownership of
how their product performs in production, not simply handing
it off to another team to worry about.

You can’t just tack on security at the end. DevOps is about
building security elements into the foundations of the solution;
not just in writing the software but also how it performs
in production.

Where Did We Get
DevOps Wrong?

Many project managers and engineers are quick to push DevOps as a value
add for their clients, but few actually know how to implementit successfully.

The phrases “DevOps” and “DevSecOps” are marketing waves and have led
to the practice being significantly over-marketed, without the execution to
back it up.

Many of the market offerings don't fit well with the core philosophy of
DevOps, which we'll getinto in this eBook.

DevSecOps has marketing built into it because it is simply the future of how
development should be approached. Marketing should never precede
functionality, especially in regards to security.

Development has traditionally been viewed as somewhat modular: one
team does one role and passes the project along to another team, with secu-
rity elements simply being “bolted” on at the end. So many of the security
risks are centered in operations, that we’re severely neglecting our
ethos as developers by taking subpar products to market.

The DevOpS Security practices on

DevOps continuum

Continuum v

The DevOps continuum is an infinity loop of the most DeVSeCOpS
pertinent development sequences to ensure the creation
of the highest-quality and most-secure product possible.

There are a few elements to become intimately familiar
with, but let’s focus on the Analyze and Learn phase of the PRE-PRODUCTION
continuum as an example.

PRODUCTION

The traditional model of gaining products through asecurity
review into production is flawed. The problem is that when
independent security audits are done after the product is
shipped into production, and not embedded in the initial
and ongoing development process.

When you get rid of the gating function of security
assessments, and you switch it to an out-of-band process,
then it's value becomes one of learning.

The Defect-Incident
(or Vulnerability
Three-Step)

For example, teams should implement some manual code
review of changes periodically, and especially before
launch. Suppose you don't do an independent security
code review from a security professional's point of view
before pushing to production. In that case, you're exposing
yourself to the threats in the future.

The idea is there are three things that you should do
when you find a defect, have an incident, or your security
assessment team comes back with a list of vulnerabilities.

Step #1: Fix those particular vulnerabilities (but you
shouldn't stop there).

Step #2: Try to discern a pattern that matches

this vulnerability.

1. How did this happen?

2. How does this manifest itself?

3. Are there any other places in your current product,
the one that went through the assessment, and other
products you're responsible for that have thisvulnerability?

Step #3: look for a way to change something that will
prevent this vulnerability from happening again.
Change your technology, change your testing, suite,
training, whatever will prevent that particular

problem from ever occurring again.

Defect-Incident
In Practice

For example, let’s imagine you’ve identified a buffer overflow as
the source of a serious defect or vulnerability.

In the past, when almost everything was C++ in production,
developers found that by switching over to Java, they were able
to eliminate the possibility of a lot of buffer overrun type vulnerabilities.

That was a dramatic technology change to prevent a whole
class of very dangerous vulnerabilities from ever occurring.

Most of the time, you don't need to make that dramatic of a
change, but you should think about and try to come up with a
preventive measure that will be effective going forward.

By using Defect-Incident (or Vulnerability Three-Step), you’ll be
able to effectively diagnose and solve the issue at hand.

The DevOps
Continuum (part 2

The fully fleshed out DevOps Continuum is a lot of stuff to
consider, and many DevSecOps leaders have this printed
out over their desk, but studying the steps here isn’t the
hard part...

Security practices on DevOps continuum } DevSecOps

PRE-PRODUCTION PRODUCTION

PRE-PRODUCTION

Predict & Prepare: \ Plan: \
- If we do X, will it mitigate Y? * Threat modeling -> backlog items
- Capacity forecasting * Analyze/predict -> backlog items
- Learning -> Update playbooks and traininy - Does the design comply with policy? /
Develop Code/tests: \ X \
- Static/IAST analysis Build:
- Abuse case tests - Interrupt-the pipeline code analysis
- Code Review / /
Test: Validation more:
+ Test security features - Pen testing (Vuls found -> test scripts)
- Common abuse cases - Compliance validation (PCl, etc.)

* Fuzzing.

PRODUCTION

Configure & deploy: Monitor:
* Configuration validation - Log information for after-incident analysis
- Feature toggles/traffic shaping configuration
* Secrets management
Detect: Contain:
* Intrusion detection " RASP auto-respond
- App attack detection * Roll-back or toggle off

- Block attacker
* Shut down services

Stabilize: Analyze & Learn:

- Restore/maintain service for * Analysis -> Learning

non-attack usage " Defect/Incident 3-step
- New attack surface? Plan to update the
threat model

N

The Hardest Part of
Instituting DevSecOps

The most difficult part of pushing DevSecOps within any
organization isn't memorizing a framework; it's winning
your development teams' hearts and minds to believe in,
and commit to, the DevSecOps mission.

How do we get engineering teams to adopt DevSecOps at a
foundational level?

How can we institute behavioral and cultural change at
lasting scale?

Coming up with a list of things is easy while getting people to
adapt and change is the hard part. That's really where the
magic of the DevSecOps framework comes in.

We’ve built a three-part framework for adopting new
DevSecOps practices into development organizations.

What is the Three-Part Framework?

This framework is the result of the largest ever study correlating practices to performance conducted by Larry Maccherone
during his time at Rally Software. The framework was initially designed to help develop agile teams, and Maccherone eventually
adjusted this framework to modern DevSecOps from his experiences working with large companies such as Ford Motor
Company, USAA, and Comcast.

Step #1: Win the Hearts and Minds of Developers

You have to have credibility. You have to have trust. You have to win the hearts and minds of developers.

This can be hard for security specialist groups because the typical relationship between the security group at large
organizations usually has a little bit of tension.

You’re never going to win the hearts and minds of developers with a lack of trust, so instilling a DevSecOps transformation
becomes a function of trust.

There are a number of tools that we give to security specialist groups that will help them win the hearts and minds of
developers. One of those tools is the principles labeled the DevSecOps manifesto.

The DevSecOps manifesto

There are alternatives to the DevSecOps manifesto, but this is the one that we think fits our particular approach the best. It's
formulated in a format such that many development teams will recognize something more than something else, in exactly the
way that the agile manifesto is formulated.

1. Build security in more than bolt it on.

2. Rely on empowered engineering teams, more than security specialists.
3. Implement features securely more than security features.

4, Rely on continuous learning more than end-of-phase gates.

5. Build on culture change more than policy enforcement.

Principle #1:
Build security in more
than bolt it on.

This isn’t a marching order to stop doing any bolt-on on security. You’re still going to
have networks and firewalls, and you’ll still have the ability to look at network traffic to
identify bad actors, and a wide range of other bolt-on type activities that we recommend
continuing to use.

This principle puts the emphasis on building security from
the get-go.

Principle #2:

Rely on empowered
engineering teams, more
than security specialists.

You will never achieve optimal security with just security specialists.

We have to have the engineering team involved in everything that concerns
implementing features securely.

The only way you can do that is to have your engineering teams deeply involved
in the process.

Principle #3:
Implement features securely
more than security features.

It’s more than just adding security features. When developers think
about security, they usually think about encryption, authentication and
authorization.

If you just focus on those security features, that’s sort of like taking
a bank vault door with a really hard-to-pick lock, and bolting it on
any old room in any old building.

The bad guys are going to ignore the highly evolved and protected
security feature of the bank vault, and they're going to just bust through
the walls of the building.

The software equivalent is that our products' features are just there to
provide the functionality, and each feature is a potential avenue for an
attacker to exploit. We need to implement security features early on
to cover any holes that a bolt-on feature misses.

Principle #4:
Rely on continuous learning
more than end-of-phase gates.

Simply relying on end-of-phase gates disempowers developers and
disincentivizes them to create the most secure product possible.

“That’s not my job, why should | care?”

“Security is going to check it, they’ll enforce their own policies, I'm going to
just do the best | can, but I'm not going to try really hard to understand the
security implications because we’ve got this other group that owns that
aspect.” - Developers stop thinking of security as part of their problem.

If you shift the burden of security, you can never get full ownership,
and ownership is the key to making this all work.

Principle #5: Build on culture change
more than policy enforcement.

When you only focus on policy enforcement, you get a very negative pattern.

Policies outline a goal, but not always a common outcome. Organizations exposed to many security threats often find out that their
policies are outdated and they don’t match the current schools of thought regarding security.

A policy-oriented culture encourages developers to ignore potential security threats outside the scope of the policy and says developers
don’t have to worry about any security threat as long as they adhere to company policies.

Your company culture must be very adaptable to change because security best practices are constantly changing.

We need to let developers genuinely believe we trust them. They’re integral to the business context and application of what they’re
building- so involve them in the process.

The Pledge

This pledge is the result of getting feedback and buy-in from dozens of small teams at Comcast. It’s designed to align the entire hierarchy
of development with the overarching organization. This has become our philosophy and marching order for our development teams.

The Pledge communicates one simple but powerful message to developers: We trust you and we trust you want to do the right thing.

We, the Security Team

Recognize that Engineering Teams:

1. Want to do the right thing

2. Are closer to the business context and will make smart trade-off
decisions between security and other risks

3. Want information and assistance so they can improve our
security posture.

Pledge to:

1. Lower cost and effort side of any investment in developer security
tools or practices

2. Assist twice as much with preventative initiatives as we beg for your
assistance in reacting to security incidents.

We understand that we are no longer gatekeepers, but rather
tool-smiths and advisors.

Why
the Pledge Works

The Pledge is an incredibly powerful way to communicate
with development teams.

The only time most development teams have contact with
security people is when some vulnerability has been
exposed, and this changes the script.

Development teams recognize that this is completely
different from any other interaction they’ve had with a
security team. We’ve seen firsthand how many developers
are eager to work together and get behind this message.

SECURITY AT THE SPEED OF SOFTWARE

The
Trust Algorithm

At the heart of the trust algorithm is the trust formula,
which is essentially credibility + reliability + empathy all
over apparent self-interest.

RUST

Algorithm
for DevSecOps

Credibility + Reliability + Empathy

Trust =
Apparent self-interest

Back to the

Three-Part Framework:

Summary of Step #1

Winning the hearts and minds of developers needs organizational buy-in at both ends of the hierarchy. By adhering to the
DevOps Manifesto, we can empower our developers.

In summary:

1. Build security in more than bolt it on.

2. Rely on empowered engineering teams, more than security specialists.
3. Implement features securely more than security features.

4. Rely on continuous learning more than end-of-phase gates.

5. Build on culture change more than policy enforcement.

This is all done to build trust with your development team, and increasing the numerator of credibility, reliability, and empa-
thy, to establish more trust in the face of apparent self-interest.

Make it easier
for development
teams to know
what the right
thing is (and
make it easy for
them to do it)

You need to be able to sit down with a dev team and ask if
they’re getting the training they need, and make sure that
training program is available to them.

You need to make it as easy as possible for your development
team to accomplish their goals, by essentially helping them
every step of the way.

The hard work is getting them to change their working
agreements: What's the working agreement inside of my
team for when and when we'll consider a story, feature, or
sprint done?

We accomplish this through a DevSecOps self-assessment.

The DevSecOps Self-Assessment

The DevSecOps Self-Assessment is a facilitated self-assess-
ment where you sit down with your team with a table of 30
different practices organized into a list of disciplines.

This table must be tailored to each individual organization,
as you must decide what the working agreements are
within your team.

SECURITY AT THE SPEED OF SOFTWARE

18

Disciplines < Less mature practices More mature practices >

Craftmanship 100% of group members who have been Group has acess to at least one green Group has: Group has:
employed at least 90 days have been Belt -Minimum 15% green belt -Minimum 25% Green Belt
through Yellow Belt training -At least one brown belt -Minimum 5% Brown belt

-At least 1 Black Belt

Architecture and As appropriate, a threat model or an security architecture review (SAR) has been done and kept up to date with every significant change to the attack surface and
Design resolved all issues within SLA (typically 120 days for critical and high)
Asset management IniTRC all components of your applications have an accurate security POC. (To find: Application > Component > Responsibilities) (To add: Applications > component >

New responsibility > security POC (select responsibility from drop down) and add New

DevSecOps Tools PCA/SCA tool(s) integrated (nonvisible Team has working agreements on how it becomes aware of, triages, and resolves findings in the current dev cycle to

Primary code text) pipeline and (nonvisible text) (nonvisible text) within current team chosen policy (see below). Ex: Notices in slack/email; and/or findings put in Jira

analysis merge, or cadence backlog via (nonvisible text) considered at planning; and/or some highly visible console is checked on a regular cadence;

(PCA = SAST/IAST) and/or (nonvisible text) (“failed build” or disabled merge button), etc.

Software

compo§ition “Stop the bleeding” - Policy/configu- We (nonvisible text) We have cean scans for our applica- We have clean scans of all code

Analysis (SCA) ration is set to interrupt the pipeline Application’s legacy code or a tion’s legacy code for a large # of with all appropriate checkers
or stop progress unless we get a clean small # of high risk checkers (nonvisible text) high risk checkers on including 3rd party code and
scan confirming no new (not legacy) (OWASP to 10 or appropriate (nonvisible text) PCI 3.2, etc. as open source (that isn’t covered
vulnerabilities with all appropriate subset) appropriate) by an SCA)

checkers turned on

Network-originated Findings for network-originated scans (ex: Qualys, Nessus) run against your Authenticated automated self-scans (PCl only) Authenticated scans are
Scans components by the security team are resolved within the SLA (typically 120 days (Uscan, etc.) are run and findings are being run for your components
for critical and high) resolved in the current dev cycle and findings resolved within SLA
Independent Independent security assessment (aka Pen testing) done & kept up to date at Red/Purple team exercises done
Security appropriate cadence (typically annually) and issues resolved within SLA on the system your resolved in

Assessment the SLA.

The DevSecOps Self-Assessment is so powerful in its ability to break an extremely complex and comprehensive organization down into
asimple table.

The table is designed for the most gradual on-ramp for development teams. It should have all of the workings necessary to actually
adopt a full DevOps shift into your team's core practices and keep you and yourteam accountable.

The table is color-coded to correspond to whether things are already done (green), being worked on (light green), not yet being
worked on (red), or not launched yet (black).

Color code every cell, and at the end, ask the development team to pick a cell they want to turn green next quarter- enabling this
and making accomplishing these goals as easy as possible is your next mission.

Get management involved

Summary of Step #3

In this step, management gets transparency of rollout status and the mechanism to set goals moving forward.

This allows management to prioritize building security features into every step of the programming, rather than steamrolling through
feature after feature.

In parallel to the DevSecOps self-assessment, management should have their tracking criteria to view their organization's
developmental practices' maturity as they're adopted.

SECURITY AT THE SPEED OF SOFTWARE 20

Visualizing an Org’s
DevSecOps maturity:

< Less mature practices

Craftmanship

Threat Modeling

Static Analysis

Dynamic Analysis

Pen Testing

Reference
Components
and Designs

100% Yellow Belt after first 90

days of employment

Min 30% Green Belt
At least one Brown Belt

At least 1 Green Belt

A threat model has been done and kept up to date with every significant change to attack surface

New code break the build

clean scan, all checkers “stop

the bleeding”

Port Scans

Mostly builtwith reference
components and designs

Legacy code clean scan,
small # of checkers
(OWASP Top 10)

Legacy code clean, more
checkers (SANS Top 25)

Fuzzing (black-box dynamic) White box dynamic

In house pen testing

Non-reference components have had an security code review

More mature practices >

Min 50% Green Belt
Min 20% Brown
At least 1 Black Belt

All code including
3" party clean scan, all
checkers

Automated
remediation and/or
responde (RASP)

Red team exercises

Contributing to reference
components and designs

In Summary:

Encouraging engineering teams to adopt DevSecOps at a
foundational level is about instituting meaningful behavioral
and cultural change. It’s going to require buy-in from every
level of your organization.

By following our three-part framework, you’ll be able to
encourage a cultural shift in your organization that forti-
fies your development practices against the growingly
complex security threats of the modern era. By understanding
the base principles, honoring the pledge, and by performing
meaningful self-assessment, individuals, team, and the
organization as a whole can create buy-in and affect the
needed change.

Reviewing the Steps:

Step #1.:

Win the Hearts and Minds of Developers. Follow the five
principles of the DevSecOps Manifesto:

« Build security in more than bolt it on.

+ Rely on empowered engineering teams, more than security
specialists.

« Implement features securely more than security features.

+ Rely on continuous learning more than end-of-phase gates.
+ Build on culture change more than policy enforcement.

Step #2:

Make it easier for development teams to know what the right
thing is (and make it easy for them to do it). DevOps cultural
change takes time- use a DevSecOps Self-Assessment tailo-
red to your organization to track progress.

Step #3:

Get management involved. Get your management teams
deeply involved and intimately aware of how progress and
maturity happens in your development organization.

Introduction to Opsera

Opserais a platform designed to help software teams ship code faster with optimal security, flexibility, and
efficiency. Our Continuous Orchestration platform automates any CI/CD toolchain, enables declarative
pipelines, and provides unified insights across your entire software delivery process.

Continuous Orchestration

Toolchain Automation

Automate any CI/CD toolchain, with zero coding involved. You choose your tools, we take care of the rest.
Put together the perfect CI/CD stack that fits your organization’s goals with zero vendor lock-in. Eliminate
manual scripts and stop building toolchain automation. Free your engineers tofocus on your core business.

Declarative Pipelines

Build declarative Pipelines, quality and security piped in. Pipeline workflows follow a declarative model so
you focus on what is required — not how it’s accomplished — including: software builds, security scans, unit
testing, and deployments.

Unified Insights

Unify analytics and logs across your Cl/CD ecosystem. Comprehensive and personalized software delivery
analytics across your CI/CD process in a unified view — including Lead Time, Change Failure Rate,
Deployment Frequency, and Time to Restore. Contextualized logs for faster resolution and improved
auditing and compliance.

SaaS & Hybrid

Use Opsera as Saas,
with aseparate VPC for
each account.

Or, deploy Opseraasa
Hybrid model in your
own cloud.

Identity

We support SSO,
including Okta with
SAML, and LDAP.
Manage access to your
enterprise users with
RBAC.

Security

A dedicated VPC per
account, log aggregator,
and database. Data is
fully encrypted and
secretsare managed
ERZI#

Pick your tools

Choose any tool for any step in your
toolchain. You're the architect of the
perfect CI/CD pipeline that best fits
your goals. Opsera is nonopinionated
on your toolchain, so you get
tochoose your own best-of-breed
vendors or opensource tools.

We provision
and manage,
automagically

Opsera automatically provisions your
tooling infrastructure with no coding
involved. We even automate the
updates of your toolchain.

Build

Security

@

SAUCELARS

Testing

y

Spinnaer

Deploy

Monitoring

How it works.

Build your pipelines,
code free

Drag 'n drop the perfect workflow for each
of your pipelines. You can build dependencies
around parent/child pipelines to handle
even the most complex deployments.

Build pipelines for any language, Salesforce
and Al/ML code deployments.

e
Ll

T
Metrics for all the things, and
allthe people

85+ KPIs across your DevOps ecosystem.

Combining the analytics across all your tools,
you get access to dashboards that give you the
big picture across your pipelines, planning,
security, quality, code and operations.

View aggregated logs,
with context

Opsera aggregates the logs across all your
pipelinesand tools. Easily search by build
number and swiftly diagnose failures. Generate
files for auditory and compliance requirements.

Opsera’s platform allows you the freedom to choose your own DevOps stack —
with zero scripting involved. With Opsera, you can automate any stack, build
pipelines forany app, and deploy anywhere.

Opsera accelerates best-practice CI/CD adoption sosoftware teams can deliver
software faster, safer, and smarter.

= -

opsera.io

