
1

CI/CD Best Practices for Stress
Free Software Development

2

Modern development cycles bear little resemblance to their
predecessors in today’s fast-paced release-or-fail environment.
Old models included design, develop, and test phases and
tended to be major revisions with extended development
cycles between releases. Each release could include many
bug fixes, major UI changes, and/or new or improved features.
As a result, customers would have to wait a long time before
receiving an update with a much desired feature or change.
Fast forward to today’s app- and cloud-centric environments

where continuous improvements and short release cycles
are the norm. This has dramatically reshaped the software
development paradigm. Through this we have seen the rise of
DevOps, and most recently DevSecOps, to help enable these
rapid deployment cycles.

This shift has moved us from a linear cycle to the continuous
loop model of modern DevOps

The DevOps Continuum: Exploring the CI/CD Pipeline

Requirements

Draft

Implementation

Inspection

Maintenance

PLAN

M

ONITOR

B
UILD

CO
DE

DEPLO
Y

TEST

RELEASE

OPERATE

3

To understand what continuous integration is, let’s take a
look at what it is not. In standard practice, a developer will
checkout code from a repository to make their changes.
Legacy waterfall development cycles could mean code
checked out for extended periods of time, maybe with
single daily check-in. Integration would only be run at the
completion of changes, whether adding a new feature or
making changes to existing code.

The challenge with this methodology is that the code does
not regularly sit in a deployable state and is prone to errors
or failures when integration is finally (manually) performed.
Tracking what code blocks are causing which failures can be
time consuming and challenging. With continuous integration,
all of this changes as we shift towards an Agile methodology.

Code changes are checked-in multiple times per day, and
every time, automated integration is run to check for errors.
This means tracing the source of an error is straightforward
and can be quickly corrected. Frequent integration means
faster feedback, as well, allowing developers to stay on task
and focused on their work. And at the end of the day, your
application is always deployable (even if incomplete).

What is Continuous Integration?

The DevOps Continuum: Exploring the CI/CD Pipeline

4

Now that we’ve streamlined and automated aspects of
integration, let’s look at how deployment functions in a
continuous model. Continuous delivery is the natural next
step in automation. Once your code has been merged with the
master branch and freed from errors, it’s time to push master
branch code to production. They key here again is automation
of your pipeline.

The challenge is having the right tools to test and verify the
code, not just for errors but for function and security as well.
These checks must pass in order for the code to flow from
pre-production to production in a ready-to-be-deployed state.
This stopping point is a key differentiator between continuous
delivery and it’s nearby neighbor, continuous deployment.

What is Continuous Deployment?

The DevOps Continuum: Exploring the CI/CD Pipeline

5

Continuous deployment is the successor to continuous
delivery, in which we add an additional phase of automation
to the pipeline. Delivery leaves the code in a ready state for
deployment, but stops automation here - the deployment
step is manual, in that someone has to push the proverbial
button to make it so. With continuous deployment, the
creation of, and deployment to, the appropriate infrastructure
is all automated as part of the pipeline. The automation
stream no longer stops and waits for a push, the pipeline can

now take the code from the repository, pull the appropriate
configurations, build VMs, containers, etc. on the fly, and
deploy the code, all in one fell swoop.

Though this model truly allows for efficiency and speed, the
challenge is having the proper tools and checks in place to
manage your configurations and rollback in the event of errors
or failures.

Delivery Versus Deployment
Which Continuous Model to Use

v/s

The DevOps Continuum: Exploring the CI/CD Pipeline

6

A continuous orchestration platform can help you design such
a pipeline - like Opsera’s Continuous Orchestration

The major difference between legacy waterfall development
and agile is that instead of doing all the development, then
merging all the code into a final build, then finally testing,
developers are consistently looping through the develop-
build-test cycles. Every code integration, multiple times per
day, aka continuously. At the end of the day, the code could
theoretically be deployed as-is. So how does this achieve
more frequent releases?

Checking in code more frequently alone is not what speeds
release cycles, but certainly plays a critical role. The idea is to
break down features and new development into byte-sized
pieces that are fast to write. These ultra-fast cycles paired with
continuous integration achieve the following:

1. If integration errors occur, it’s easier to determine their
source and quickly correct the issue.

2. Code is consistently being deployed to a production-like
environment so we have built-in assurance of how the
code will work for end-users.

Now that we’ve looked at both halves of this equation, we can bring them both together to build our DevOps Continuous Integration/
Continuous Deployment Pipeline. The critical steps are:

Bringing it all Together:
The CI/CD Pipeline

The hallmark of a truly efficient pipeline is seamless
integration of tools that allow automation from end-

to-end through each of these phases.

Build Security Scan OperateTest Deploy MonitorCommit

The DevOps Continuum: Exploring the CI/CD Pipeline

https://www.opsera.io/

7

Continuous Deployment

Continuous Testing & Security

Build Unit Testing SAST Functional
Testing

Container
Scan

Repo
upload ITSM Deploy Monitor

Continuous Integration

A CI/CD pipeline achieves speed and efficiency with
automation. Every step in the pipeline should have the
appropriate tools and automation baked-in.

Now let’s take a step back and look a bit deeper at the phases
of each CI and CD and their workflows and automations.

As we saw previously, the 4 overarching phases are:

Unit testing

Integration testing

Regression testing

Performance testing

Automation is the Secret Sauce in
CI/CD pipelines

1. Commit

Static code analysis

Container scan/TVM
(before staging)

Dynamic testing

4. Security Scan

6. Operate

2. Build

5. Deploy

3. Test/Quality

7. Monitor

The DevOps Continuum: Exploring the CI/CD Pipeline

8

Now let’s look at the tools and mechanisms at play in each

phase.

Develop

Here we are writing the code, meaning that we need a
repository for storing and checking out code. Since most
development projects involve teams, team members have to
edit the same files, which increases chances of mistakes in the
codebase. To avoid this, developers use version control.

Commit

With version control, developers don’t keep just the latest
version of the code. They can save the entire history, including
all changes made by every team member. This makes it easy
for them to restore or refer to earlier versions, in the event of
any mistakes or anomalies.

Once a developer has worked on a patch of code, they add
it to the existing codebase, which changes its history and
structure.The act of addition is what it means to commit code.

To commit code, we must use version control software, the
most popular of which is Git. It is exceptionally useful, and lets
devs do a multitude of things, such as running experiments
without messing with the codebase. All devs have to do is
create a new branch, which serves as a separate copy of the
code. If it works, they can integrate changes into the main
branch.

Build

When code is checked-in to the repository, that code is
integrated into the master branch. Here is another point where
version control is necessary. In older waterfall style workflows,
integration/build would only occur after the completion
of a major feature set or large volume code changes.
When working in a more agile, continuous model, code is
integrated into the feature times per day. Code is broken
down into smaller working functions, allowing for iterative
improvements and fast integration results.

Test/Quality

Once the code is built, the resulting application must be tested
for errors, functional failures, and quality. These tests can
and should be automated using any number of purpose-built
tools. By testing at every build, feedback is received quickly
and corrections can be implemented swiftly.

Different tests are run at different stages in the CI/CD pipeline.
Generally, teams and organizations have processes in place for
code review. To start with, unit tests are run before pushing
the code to the central repository.

Once integrated with the master branch, the entire codebase
(now changed) is run through integration tests, in order to
verify that multiple software modules work in tandem without
disruptions.

The DevOps Continuum: Exploring the CI/CD Pipeline

9

Additionally, regression testing must be executed to check
that changes to the codebase has not been broken or
scrambled by recently added code. As mentioned earlier,
version control software lets you create a separate copy of the
existing code. Do that, run necessary tests and if results are
favourable, merge new code into the main branch.

Performance tests, of course are necessary to verify
operational metrics for the software at hand - speed, stability,
reliability, response time, scalability, resource usage. Software
cannot be considered ready for deployment if these functional
parameters do not match minimal technical requirements.

Security Scan
As part of our transition away from bolt-on and after-the-fact
auditing, security scanning is a critical part of the continuous
loop. Security scans can automatically detect vulnerabilities
and insecure implementations before being released into the
wild and exploited by bad actors.

Include static code analysis in this stage.This refers to the
examining of source code before it is run, by analyzing it
against a set of predetermined standards for functionality. It
is best to run static analysis right after writing the first batch
of code, before unit tests are run. While this can be executed
manually, the process is too cumbersome and prone to error.
Automating it is the way to go.

Run tests to ensure container security, which verify that
everything in the container in usage (relevant executables,
binary code, libraries, configuration files) are running in
expected order. This encompasses the infrastructure, runtime,
supply chain, runtime host, application layers, platform etc.
Container scans are an optimal way to ensure this outcome,
which need to be automated and built into the CI/CD pipeline.
The container scan confirms that containers are technically
reliable, secured against threats, free of common security
issues, and fit for deployment to production. It mitigates risk
and reduces vulnerability to possibilities of external attack or
internal malfunction.

Bring security scans into the purview of threat and
vulnerability management. Given the increased instances
of cyber attacks (DoS, DDoS, MitM attacks, phishing, SQL
injections, and so much more), development teams and
organizations backing them must assess endpoint weaknesses
and identify means to reduce risk. Threat and vulnerability
management provides the blueprint for steps taken to reduce
security risks and establish higher software resilience.

It is essential to include this step in the testing portion of your
pipeline - as they say,

“an ounce of prevention is worth a pound
of cure.”

The DevOps Continuum: Exploring the CI/CD Pipeline

10

Deploy

The code is built, testing has provided the green light, and
it’s time to push our changes to an environment, whether
pre-production or production. With continuous deployment,
regular automated push to non-production environments
gives clear feedback and metrics for how the code will perform
when released to a customer-facing environment. After
passing the appropriate tests in pre-production, code can be
automatically released to production using whatever method
or model meets your requirements.

Operate

Now that the software is live, the Ops team is knee-deep
in activities to ensure that it is functioning smoothly and
adequately meeting user expectations. The configuration of
the hosting service, in particular, determines how software
functionality scales in response to peaks and lows in terms of
active users at any time.

Additionally, the Ops team has to man the feedback
mechanism built into the application, collect customer
opinions and push them back to developers so that they can
start working on and rolling out software updates. Regardless
of how much research went into software development in the
beginning, some features & functions might be missing.

Remember that your customers are the finest testing team in
the world. They will test your software with greater scrutiny
than most QA teams, and their opinion is the only one that
matters for your application’s success.

Monitor

The final phase of the CI/CD pipeline actually functions in
parallel with the Operate stage. Feedback is collected and
analytics performed on user behaviour, software performance,
errors, etc.

This stage also requires examination of the CI/CD pipeline
itself. Check for bottlenecks that may slow down the process,
adversely impact its efficacy, or frustrate the developers.

This data is forwarded to product managers, QA managers and
development heads so that they can instill improvements in
the process. This progression remains continuous, because
even if a project ends, learnings from it are used to strengthen
development and operational mechanisms in the future.

The DevOps Continuum: Exploring the CI/CD Pipeline

11

CI/CD matters at every level of the
organization, across functional and
operational teams. The efficiencies realized by
the continuous model allow business to move
forward at speeds never before possible, while
maintaining quality and integrity. Different
members of the organization will find unique
benefits depending on their role, and the value
to the overall organization will be greater than
the sum of its parts.

Developer
For developers, the value in CI/CD is making it easy to deliver
clean, high quality code by integrating frequently and resolving
errors as they happen instead of debugging a multitude of
disparate bugs across the codebase days, weeks, or months
after the code was originally written. It also replaces manual
steps with automation, and speeds the pace of feedback, so
it’s easy to stay focused and accomplish deliverables. With
deployments happening as part of the continuous loop,
developers are no longer divorced from the infrastructure
hosting their code and deeper ties with IT and/or Operations
are forged.

DevOps Engineer
Older development and deployment strategies treat the
code and its underlying infrastructure (as well as security) as
separate. With DevOps, and more importantly, DevSecOps,
and the CI/CD pipeline, these all become unified and designed

Who am I and Why Should I
Care About CI/CD?

The DevOps Continuum: Exploring the CI/CD Pipeline

12

to work together. Security is no longer an afterthought,
infrastructure is right-sized and purpose-built to deliver
the application to best advantage. Again, all of this is
automated at deployment, often using Infrastructure-as-Code
configurations, microservices, and containers. There is no
longer the tug-of-war between developers and infrastructure
engineers when trying to determine who owns the problem
when errors or failures occur. When these functions are more
deeply integrated, collaboration becomes the name of the
game instead of “hot potato”.

Head of Engineering or Applications
When we think about CI/CD, we often look at this from the
standpoint of code, tools, integrations - all the technical
aspects. But what about management - how does CI/CD
directly impact business leaders such as the CIO? CI/CD
offers a multitude of benefits from a planning and resource
management perspective. Business leaders are always looking
for ways to increase operational efficiencies while reducing
costs. Costs and complexities can both be reduced with a well
designed CI/CD pipeline. With fewer manual steps, teams
can work more efficiently and effectively with less resource
overhead. Not to mention doing away with huge time sinks
and wasted efforts. With stronger team-to-team collaboration,
less time is wasted on tracking or assigning ownership to

issues and overall technical and business processes are
streamlined. It becomes easier to plan and predict future
needs and prepare the business to scale.

Customer
In the end, all of these efficiencies and automations don’t
mean much unless there is a customer on the other side
reaping the true benefits. In the case of CI/CD, frequent
updates means short waits between improvements and
always having access to the latest and great iteration of
the application or platform. Especially with subscription-
based software licensing being the norm, customers expect
frequent improvements to justify the ongoing expenditure.
CI/CD enables not only the fast-paced release of features, but
helps ensure the code that is delivered is functional and that
bugs are few and far between. New features can be painfully
overshadowed by a poor user experience and well-executed
pipeline can prevent customer dissatisfaction by keeping
quality high.

The DevOps Continuum: Exploring the CI/CD Pipeline

13

Solving the DevOps Conundrum with
no-code DevOps Orchestration

In order to remain nimble and, dare we say it, agile, in today’s
lightning-paced environment, CI/CD is a much needed DevOps
strategy. The benefits to the organization from top to bottom
are unparalleled. Not to mention the many benefits to more
highly satisfied customers. The common saying “if you have to
do it more than once, automate it” has never been so true in the
software development life cycle as it is today. Achieving success
with CI/CD means having the right tools in play to support your
shift left goals and efforts.

There is no easier way to build and maintain a flexible and high-
quality pipeline than Opsera’s Continuous Orchestration. Build
drag-and-drop declarative pipelines, with security and quality
piped in. Your toolchain, your preferred vendors,, with no coding
or manual integrations. Unified insights help drive business
decisions with aggregated and contextualized logs, personalized
dashboards, and over 100+ KPIs to help measure your success.

The DevOps Continuum: Exploring the CI/CD Pipeline

The investment into Continuous Orchestration will not
only pay back in dividends but also in the empowerment
of developers to ship core features, faster, and with fewer
defects.”

- Declan Morris
 Former Splunk CIO

Opsera DevOps continuous orchestration delivers easy
automation of release management across the enterprise
applications. Comprehensive visibility from the platform
helped us decommission legacy release management tools
helping reduce the Opex.”

- Dayakar Duwuru
 Sr. Director of Enterpris applications, NortonLifeLock

14

About Opsera
Opsera’s platform allows you the freedom to choose your own DevOps stack -
with zero scripting involved. With Opsera, you can automate any stack, build
pipelines forany app, and deploy anywhere.
Opsera accelerates best-practice Cl/CD adoption so software teams can deliver
software faster, safer, and smarter.

opsera.io © 2021 Opsera, Inc.

Accelerate your software delivery with no-code CI/CD pipelines

Schedule A Demo

https://twitter.com/opseraio?lang=en
https://www.facebook.com/opseraio/
https://www.linkedin.com/company/opsera/
http://opsera.io
https://www.opsera.io/schedule-a-demo

